If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-16x=144
We move all terms to the left:
x^2-16x-(144)=0
a = 1; b = -16; c = -144;
Δ = b2-4ac
Δ = -162-4·1·(-144)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{13}}{2*1}=\frac{16-8\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{13}}{2*1}=\frac{16+8\sqrt{13}}{2} $
| 24.9=x/75^2(703) | | y=-1(-5/2)-9 | | 3x+4x+8x+9x=360 | | x+3x+4x+5x+8x+9x=360 | | 11c+-19=36 | | 1/6800=(.5)^t | | 42x^2+8x-2=0 | | 6+w/10.24=14 | | 2(5n+10)=61 | | g(8)=3(8)-7 | | 2*4^(x-3)=14 | | 64=r^-2 | | 107+(3x-98)=108 | | X^2+3x=5x+3 | | 2(4y-6)=-4y+22 | | (5w^2+9w+4)+(-2w^2+4w+4)-(5w^2+7w-5)=0 | | 38+(-31+6x)+(x+12)=180 | | 45+(-3x)+(15-x)=180 | | 70+(-3+5x)+(1+3x)=180 | | 2-2=x5+7 | | -6+3+5y=5y-3 | | -2y-2(2y-5)=4+9(7-y) | | 19u-7=19u-12+7 | | 5q=-2(-5q-10) | | 5x-3/4x=0 | | 2w-3=44 | | 9=7v+37 | | 120+12m=400 | | -15-10g=g-15-11g | | -14=-5y+36 | | -6w-7=23 | | 4+2b-7=-3+2b |